Unit 7: Quadratic Equations

Unit 7: Quadratic Equations	
Scientific Calculator Required	Lessons 8,13,16,17,18
Graphing Technology Recommended	Lessons 3,4,18,21,24
Graphing Technology Required	Lessons 5,9,10,15,20,22

Lesson 5 – How to Graph Quadratic Functions (Factored Form) (Example: IM Lesson 5.2: Solving by Graphing.)

1. To graph a quadratic equation go to the Graph App ; press WEND , 5 - 英語.	MAIN MENU /// COMMANDER MAIN MENU // COMMANDER CONICS EQUA PRGM TVM CONICS EQUA PRGM TVM
 Enter the function (x – 5)(x – 3) into the first line for Y1. Press I when you finish. 	Graph Func :Y= Y18(X-5)(X-3) [] Y2: V3: [] Y4: [-] Y5: [-] Y6: [-] [SEL DE INTE STUP INTE [DRAW

Lesson 6 – Rewriting Quadratic Expressions in Factored Form (Part 1)

(Example: IM Lesson 6: Practice Problem 8)

1.	To graph a quadratic equation, go to the Graph App; press 顺刚,⑤ - 经销	MAIN MENU /// COM RUN-MATSTAT IC-ACT S-SHT 4-104 FRAPH DYNA TABLE RECUR SRAPH DYNA TABLE RECUR CONICS EQUA PRGM TVM CONICS EQUA PRGM TVM AXW B S - = 0 R R FF C 4
2. I f	Enter the function (2 – <i>x</i>)(<i>x</i> + 3) – 11 into the first line for Y1 . Press EXE when you finish.	Graph Func :Y= Y18(2-X)(X+1)-11[] Y2: V3: [] Y4: [-] Y5: [-] Y6: [-] [SEL DEL TYPE STUL TMEN [DRAW
3. I f v	Press F6 – DRAW to view the graph of the function. If your window is in the standard window you may just see the turning point of the parabola , as shown to the right.	
4	To quickly fix this, press the down arrow. This will shift the graph window up to show more of the function. Since the graph does not cross the <i>x</i>-axis , there are no real solutions. <u>Note:</u> All 4 arrow keys will shift the viewing window respectively.	

Lesson 9 – Solving Quadratic Equations by Using Factored Form

(Example: IM Lesson 9.3: Revisiting Quadratic Equations with Only One Solution)

1.	To graph a quadratic equation go to the Graph App ; press 派则 , 5 - 梁明.	MAIN MENU ////////////////////////////////////
2.	Enter the function $x^2 - 2x + 1$ into the first line for Y1. Press EXE when you finish.	Graph Func :Y= V18X ² -2X+1 [] V2 V3: [] V4: [-] V5: [-] V5: [-] V5: [-]
3.	Press F6 – DRAW to view the graph of the function. What do you notice about the x-intercepts of the graph? What do the x-intercepts reveal about the function?	· · · · · · · · · · · · · · · · · · ·
4.	To find the x-intercepts , press F5– G-Solv to see the Graph-Solve options.	

Lesson 10 – Rewriting Quadratic Expressions in Factored Form (Part 4) (Example: IM Lesson 10.3: Timing a Blob of Water)

1.	Students are asked to find the time the water droplet is in the air. Soon they will find that factoring the equation set equal to zero will not always work. However, the <i>x</i> -intercept can be found using the root solve tool on a graph. To graph the quadratic equation, go to the Graph App ; press WEND, 5 - WEND.	MAIN MENU RUN-MATSTAT e-ACT S-SHT X+Cot H-Cot SRAPH DYNA TABLE RECUR SRAPH DYNA TABLE RECUR CONICS EQUA PRGM TVM AXM S OF STATES AND S CONICS EQUA PRGM TVM AXM S OF STATES AND S B ##FF
2.	Enter the function $-5x^2 + 9x + 3$ into the first line for Y1. Press EXE when you finish. The equation in the example uses " <i>x</i> " instead of " <i>t</i> " but when using the graphing feature in the calculator, use " <i>x</i> " for the input variable.	Graph Func :Y= Y18-5X ² +9X+3 [] Y28 Y3: [] Y4: [] Y5: [-] SEL DEL TYPE STUL TALL
		lliew Window
3.	Since this application deals with positive time and positive heights, adjust the viewing window by pressing SHFT F3 – TANK . Adjust the window to the values shown to the right.	Xmin :-0.5 max :3 scale:1 dot :0.02777777 Ymin :-2 max :8 [INIT TRIG STD <u>STO RCL</u>

CASIO

Lesson 15a – Verify Approximate Solutions to Quadratics Graphically

(Example: IM Lesson 15.3: Finding Irrational Solutions by Completing the Square)

IM Algebra 1 – Unit 7: CASIO Technology Use at a Glance

CASIO

5.	Press F1 – R00T . This will display the first <i>x</i>-intercept at the bottom of the screen. The first root is approximately -3.732 .	Y1=X2+4X+1 X=-3.732050808 Y=0
6.	If you press the right arrow (()), you will see the second root at the bottom of the screen which is approximately -0.268 .	Y1=X2+4X+1 ROOT X=-0.2679491924 Y=0
7.	To view the exact solutions from completing the square as equivalent decimal approximations press INEN , 1 - MARE . to go to the Run-Matrix App .	MAIN MENU /// (COM MAIN MENU // (COM STAT LE ACT SSH
8.	Enter the exact solution found by completing the square into the calculator as shown. Each solution needs to be entered into the calculator separately. If your calculator still shows the exact value , highlight the value and press the SMD button to quickly switch to the decimal approximation . Graphically, -3.732 verifies $-2 - \sqrt{3}$ while the other root, -0.268 verifies $-2 + \sqrt{3}$.	-2+√3 -2-√3 -3.732050808 -2+√3 -21√3 -21 267/94/91/929 -21 000 267/94/91/929

Lesson 15b – Verify Exact Solutions to Quadratics with Equation Solver

(Example: IM Lesson 15.3: Finding Irrational Solutions by Completing the Square)

IM Algebra 1 – Unit 7: CASIO Technology Use at a Glance

5.	After typing the 1 for c , press either EXE or F1 – S0LO to run the solver as shown to the right.	aX2+bX+c=0 X1[=0=250] X2[-3.132]
	approximations in the top left of the screen.	
	The value highlighted will display the exact value in simplest radical form in the bottom right of the screen.	-2+√3 REPT
6.	Press the down arrow () or EXE to display the exact value for the second root .	aX2+bX+c=0 XI[-0.261] X2[=116]
		-2-√3 REPT
7.	To solve another quadratic equation, press EXE, or EXIT, or F1-REFT to repeat the process of entering new coefficients .	aX2+bX+c=0

CASIO

Lesson 15c – Graphing to Approximate Irrational Solutions

(Example: IM Lesson 15: Practice Problem 4)

1.	To find approximate solutions to a quadratic equation, we can graph the function and find its roots . To graph the quadratic equation, go to the Graph App ; press IEN , 5 - EXE .	MAIN MENU /// COM RUN-MATISTAT JE-ACT S-SHT X-TOAS Y-TOAS F-LC 1 // EST S-SHT GRAPH DYNA TABLE RECUR CONICS EQUA PRGM TVM CONICS EQUA PRGM TVM AXM- B=0 FILLE STATE SAMPLE S
2.	To find the approximate solutions for the first question, enter the function $x^2 + 10x + 8$ for Y1. Press EXE when finished.	Graph Func :Y= Y18X ² +10X+8 [—] Y2 Y3: [—] Y4: [—] Y5: [—] SEL DEL TWPE STWL MARTIDE
3.	Press F6 – Dጽሰ ሠ to view the graph of the function.	<u>\</u>

IM Algebra 1 – Unit 7: CASIO Technology Use at a Glance

Lesson 16a – Simplify the Quadratic Formula by Manual Substitution

(Example: IM Lesson 16.3: Meeting the Quadratic Formula)

1.	Press MENU), ① - 환행 . to go to the Run- Matrix App.	MAIN MENU /// COM MAIN MENU /// COM STAT LEACT SSHT GRAPH DYNA TABLE RECUR AND SHT GRAPH DYNA TABLE RECUR CONICS EQUA PRGM TVM CONICS EQUA PRGM TVM SAX 10 SAX 10 SA
2.	We can use this section of the calculator to simplify the quadratic formula. To solve the equation: $x^2 + 4x - 5 = 0$, using the quadratic formula we must first identify the a,b and c values. For this equation: a=1 $b=4$ $c=-5Now we will manually substitute these valuesinto the quadratic formula. In your calculatorpress the fraction button, \square, to start.$	D JUMP DEL MAT MATH
3.	The quadratic formula is unique because it contains the " \pm " symbol , yielding 2 answers. This requires using the addition and subtraction signs individually on the calculator. We can use the plus symbol first then edit the equation in our calculator to use the subtraction sign after. To get the square root symbol press [SHFT] then x^2 . Place () around each value as you manually substitute them into the formula	<u>-4+\(4)²-4(1)(-5)</u> 2(1) JUMP DEL FMAT MATP
4.	Once finished, press EXE to find the first solution , 1 .	$\frac{-4+\sqrt{(4)^2-4(1)(-5)}}{2(1)}$ 1 0 0000 000 000 0000

CASIO

5.	Now press the up arrow until you highlight the entire expression you just typed.	-4+(4) ² -4(1)(-5) 2(1)	1
		<u>Juni</u> p (<u>Jel</u>) (Matip	
6.	Then press the right arrow and delete the addition sign in the numerator and replace it with the subtraction sign.	<u>-4-(4)²-4(1)(-5)</u> 2(1) D	1
7.	Press EXE to recalculate the expression. You will now see the 1 be replaced with the second solution of -5 .	<u>-4-\(4)²-4(1)(-5)</u> 2(1) D JUMP DEL MAT MATP	-5

Lesson 16b – Simplify the Quadratic Formula by Storing Values

(Example: IM Lesson 16.3: Meeting the Quadratic Formula)

1.	Sometimes we want to use the quadratic formula to solve an equation with answers in simplest radical form . If we need to repeat this process for multiple questions, we can store the values for a , b , and c , and the calculator will " auto-refresh " calculations. Press (MN) , $(1) - (1) - (1) = (1)$. to go to the Run-Matrix App .	MAIN MENU /// COMESIEQUA PRGM TVM
2.	We can use this section of the calculator to simplify the quadratic formula. To solve the third equation: $x^2 + 10x + 18 = 0$, we must first identify the a , b , and c values. For this equation: a = 1 $b = 10$ $c = 18Now we will store these values for a, b, andc in the calculator. In your calculator, type thevalue first.$	1 JUMP DEL MAT MATP
3.	Next press \longrightarrow , which is the Store command. Then use the ALPHA button followed by $(\overline{X, \theta, \overline{1}})$ to obtain the letter a . Press EXE .	1 → A D JUMP DEL • MAT (MATC)
4.	Repeat the process to store the values for b and c .	1 → A 10 → B 18 → C 18 UNIP DEL MAT MATE

5. At ti disc root sim Reg in th eva Sinc irra	mes, knowing the value of the criminant allows us to know the type of s and may be necessary to show plifying the radical for the NYS gents exam . Since we stored a , b , and c he calculator, we can type $b^2 - 4ac$ to luate the discriminant for this quadratic. ce the discriminant is 28 , there will be 2 tional roots.	10→B 18→C B ² -4AC JUMP DEL MAT MATP	10 18 ME
6. To I SHF SHF SHF Sho poir Reg	know if this would simplify , press \mathbf{x}^2 for the square root ($\sqrt{}$) and then \mathbf{x}^2 for answer . Press $\mathbf{x}\mathbf{x}$. e: This intermediate step of $\sqrt{28} = 2\sqrt{7}$ uld be shown in student work to earn full its on a 4 pt SA question on the NYS gents exam . (Ref: Jan '25 Q33 Rubric)	B ² -4AC √Ans D DECL DECA	18 28 2√7
7. Nov to fi qua "±" requ sigr We typin EXE	w we will type the entire quadratic formula nd the final, simplified answer. The dratic formula is unique as it contains the symbo l, yielding 2 answers. This uires using the addition and subtraction as individually on the calculator. will use the addition symbol first while ng the quadratic formula as shown. Press when finished.	••••• <u>-B+√B²-4AC</u> 2A DELL DELA	2√7 -5+√7
8. Nov you type	v press the up arrow (() twice until highlight the entire expression you just ed.	NTITES - B+JB ² -4AC 2A D DELL DELA	2√7 -5+√7

IM Algebra 1 – Unit 7: CASIO Technology Use at a Glance

CASIO

 Then press the right arrow and delete the addition sign in the numerator and replace is with the subtraction sign. 	ו••= 2√7 <u>-B-1/B²-4AC</u> 28 -5+√7
10. Press EXE to recalculate the expression.	ו••∍ 2√7
You will now see the addition sign be replaced with a subtraction sign for the second solution.	<u>-B-4HC</u> 2A -5-√7 0 000 000
11. If we had to solve more quadratic equations in standard form, we could arrow up and edit our stored values for a , b , and c and the calculator will automatically recalculate each of the expressions on the lines below. For the next problem, $x^2 - 8x + 11 = 0$, store: $a = 1$ $b = 10$ and $c = 18$. <u>Note:</u> If changing b or c results in an imaginary root , an error message will result if the calculator is in real-solution mode.	-8→8 11→C -8 11 B ² -4AC 0110 0110
12. Scrolling down, we can see that all our expressions have been recalculated with the updated values stored for <i>a</i> , <i>b</i> , and <i>c</i> . In simplest radical form, the solutions for the fourth equation are $4 \pm \sqrt{5}$.	√Ans 2√5 <u>-B-√B²-4AC</u> 2A 4-√5 000000000000000000000000000000000000

Lesson 16c – Comparing Features of Quadratic Functions Graphically

(Example: IM Lesson 16: Practice Problem 4)

1.	Given the equations of two projectiles, we need to determine which will hit the ground first and each object's maximum height. Both can be determined graphically. To graph each equation, press (MENU), 5 - 5	MAIN MENU RUN-MATISTAT E-ACT S-SHT 4-1c 1 2000 EEEE EEEE SRAFH DYNA TABLE RECUR SRAFH DYNA TABLE RECUR CONICS EQUA PRGM TVM AXM4 EEEE EEEE EEEE
2.	Before entering our equations, adjust the viewing window to appropriate dimensions. Press SHFT, then F3 – TIMP to set the viewing window.	Graph Func :Y= V1: V2: V3: V4: V4: V5: V6: [-] [SEL DEL IV9: STVL STVL STVL
3.	Being projectiles , we mainly want to focus on the equation's behavior in the 1 st quadrant . The settings to the right will give an optimal window for this problem. When finished, press EXE . In practice, it may take students a few times to view the graph and adjust the window as necessary. Minor translation adjustments to the graph can also be made utilizing the arrow keys .	View Window Xmin :-0.5 max :6 scale:1 dot :0.0515873 Ymin :-5 max :50 INIT TRIG STO STO RCL
4.	Enter the motion equations for Object A and Object B for Y1 and Y2 . Use " x " as your input variable instead of " t ". Press as you finish each equation. To more easily see which graph is which, press F4 – STUP to change the line style .	Graph Func :Y= Y1825+20X-5X ² [] Y2830+10X-5X ² [] Y3: [] Y4: [] Y5: []

CASIO

Lesson 20 – Graphing to Predict if Zeros are Rational or Irrational

(Example: IM Lesson 20.2: Suspected Irrational Solutions)

5. The second zero is around 2.828427125. Since neither zero terminates nor repeats, students can assume these are both irrational. To know with 100% certainty, solve algebraically or utilize the polynomial solver. In this case, either method would show the exact answer of $x = \pm \sqrt{8}$.

To find the zeros for the other 3 functions, press **EXIT**, then repeat the previous steps.

Lesson 22 – Verifying Quadratic Expressions Written in Vertex Form

(Example: IM Lesson 22.2: Back and Forth.)

